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Abstract. In this paper, the analysis of the title problem is based on mixed first-order thick-beam one-dimensional
plate theory, and on using a small-parameter approach towards its numerical solution. The boundary conditions at
the edges of the beam may be quite general, and between these two edges the beam may have varying thickness.
Closed-form solutions have been developed for the static response of orthotropic beams with nonlinear thickness
variation subjected to uniform loading. The accuracy of the present model is demonstrated by problems for which
exact solutions and numerical results are available, and the results are also presented for a variety of problems
whose solutions are not available in the literature.
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1. Introduction

Current research activities on the static response of beams focus invariably on various compli-
cating effects, such as shear deformation, general polygonal boundaries, material anisotropy,
loading, thickness non-uniformity, and so on. Simplifying assumptions as to stress-distribution
states, namely that certain stresses are zero or constant in the domain of interest, are made.
This decreases the number of dependent variables to be dealt with and permits the solution
of several problems of interest. In the structural studies, the assumptions are made primarily
about displacement fields. Also, they usually concern certain aspects of the constitutive law to
be employed. The variational process will then give us the proper equilibrium equations and
the appropriate boundary conditions for the problems.

Most important, if appropriate assumptions for the displacement field are made, the num-
ber of variables is significantly reduced and this facilitates the actual computations. For the
classical beam theory (CBT), the problem is reduced to a single dependent variable w(x)

representing the deflection of the centerline of the beam. It is clear from the displacement
field of this theory that all strains, except εxx , are zero. Also, the bending deformation is
given in terms of the deformation of the centerline of the beam. So, the CBT does not include
the effects of shear deformation. For short stubby beams, this contribution obviously cannot
be neglected. For this reason, the first-order beam theory (FBT) is presented as a means of
accounting for the effects of shear in a simple manner.

Variable-thickness beams are widely used in many kinds of high-performance surface and
air vehicles. This requires further refining of mathematical models describing their behaviour.
The selection of a model that adequately describes the response of a structure is made on the
basis of the relative beam thickness and type of loading.
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When the thickness along the length of a beam is variable, its closed-form solution be-
comes very complex, even for simple cases. For uniform-thickness beams, however, many
solutions for elastic analysis have been developed and are available in the literature [1–7].
The bending characteristics of thin and thick beams of uniform thickness may be obtained by
simply specifying the beam aspect (length-to-thickness) ratio and, in addition, Poisson’s ratio,
if distributed loads are involved. The bending characteristics of such beams have been studied
at great length [8–14].

The analysis of elastic structures of variable thickness is very rare in the literature [15–18].
In this paper, the model of a thick beam that is also applicable to a 1-D plate, is put forward.
The complicating effects considered herein concern variable thickness, various boundary con-
ditions and material variability in that the beams could be orthotropic or, especially, isotropic.
The bending problem of an orthotropic beam with nonlinear thickness variation is investi-
gated. Various cases of thickness variation and boundary conditions are studied. With the help
of a small-parameter method, a wide variety of deflections, bending moments and normal
stresses is presented. Several numerical examples, including comparisons with some results
available for uniform beams, are given to illustrate the salient features of the present for-
mulation. In addition, appropriate conclusions concerning the thickness variation, thickness
parameter, and various effects related to boundary conditions are formulated.

2. Governing equations

Consider a rectangular beam of length, L, width b, made of an orthotropic material having its
coordinate axes (x, y, z) chosen such that x is the axial coordinate. Let the thickness h of the
beam be varying in the x direction only, that is, h = h(x). All applied loads and geometry
are such that the displacements (u1, u2, u3) along the coordinates (x, y, z) are functions of
the x- and z-coordinates only. Here we further assume that the displacement u2 is identically
zero. Shown in Figure 1 is the profile of a beam of variable thickness with uniform, linear,
quadratic, and cubic thickness variations.

The beam surfaces are assumed to be subjected to the following traction field:

t̂ (x, y, 0) =
(

0, 0,−q(x)

b

)
, t̂ (x, y, h) = (0, 0, 0). (1)

In what follows we have substituted σ1, σ3, and σ5 for the conventional σxx, σzz, and σzx,
respectively. Thus, the boundary conditions on the beam surfaces are:

σ3 = −q(x)

b
, σ5 = 0 at z = 0; σ3 = 0, σ5 = 0 at z = h. (2)

The displacement-based one-dimensional field is assumed to be of the form

u1(x, z) = −zψ(x) = −z

(
dw

dx
− ϕ(x)

)
, u3(x, z) = w(x), (3)

where the function w(x) is the transverse normal component (deflection) of the displacement
of points on the neutral axis of the beam and ψ(x) is the rotation of line elements along the
centerline due to bending only. Note that the shear strain is the same at all points over a given
cross-section of the beam. Thus, the angle ϕ(x), used hitherto for rotation of elements along
the centerline, is used to measure the shear angle at all points in the cross-section of the beam
at position x. The strain-displacement relations are now as follows:
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ε1 = εxx = −z
dψ

dx
, ε3 = εzz = 0, ε5 = 2εxz = ϕ(x). (4)

The displacement field of classical beam theory (CBT) can be obtained from the present first-
order beam theory (FBT) by setting ϕ = 0.

The present theory of beam behavior will be derived by application of the mixed variational
formula (see, e.g., [19, 20]),

0 =
∫ t1

t2

{∫∫∫
V

[
ρüiδui + δ

(
σij εij

) − δR
]

dν + δ�

}
dt, (5)

where ρ is the density of the undeformed body, (t1, t2) is a time interval, and R is the com-
plementary energy density. The potential energy � of the applied loads can be defined as a
function of the displacement field ui and the applied loads as follows:

� = −
∫∫∫

V

Biuidν −
∫∫

Sσ

Fiuids −
∫∫

Su

njσij

(
ui − u∗

i

)
ds, (6)

where nj are the components of the unit vector along the outward normal to the total surface
Sσ + Su; Bi are the body forces measured per unit volume of the undeformed body; Fi are
the prescribed components of the stress vector, per unit area of the surface Sσ , and u∗

i are the
prescribed components of the displacements of the remaining surface Su. In the absence of
body forces and prescribed displacements, we have for the first variation of �,

δ� = −
∫ +L/2

−L/2
q(x)δw dx. (7)

It is clear that both the displacements and the stress are taken to be arbitrary in the mixed
variational formula (5). Then, the non-vanishing stresses are assumed to be of the form (for
more details, we refer to [10, 20]):

σ1 =
(
z − h

2

)
G1(x), σ3 =

3∑
r=0

zrG
(r)
3 (x), σ5 = z

h

(
1 − z

h

)
G5(x). (8)

The functions G1 and G5 may be easily obtained from the observation that the in-plane normal
stress σ1 and the transverse shear stress σ5 satisfy the following stress resultants:

M = b

∫ h

0
zσ1 dz, Q = b

∫ h

0
σ5 dz, (9-a)

where M is the bending moment and Q the shear force. Also, the functions G
(r)

3 arise from
the fact that the transverse normal stress σ3 satisfies the boundary conditions (2), as well as
the following conditions∫ h

0
σ3 dz = 0,

∫ h

0
zσ3 dz = 0. (9-b)

In this case, the stresses (8) can be written in the following final form:

σ1 =
(
z − h

2

)
M

I
, σ3 = −q

b

[
1 − 8

( z

h

)
+ 10

( z

h

)2
] (

1 − z

h

)
, σ5 = 6Q

A

z

h

(
1 − z

h

)
.

(10)
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where I = bh3/12 and A = bh. It should be noted that the transverse shear stress σ5 is
a function of z and satisfies the boundary condition (2); it vanishes on the bounding planes
(z = 0 and z = h). For the present theory the first variation of the complementary energy
density takes the form [21, pp. 24–37]:

δR = (a11σ1 + a13σ3) δσ1 + a55σ5δσ5, (11)

where the elastic constants aij can be expressed in terms of the engineering orthotropic char-
acteristics as

a11 = 1

E1
, a13 = −ν13

E1
, a55 = 1

G13
, (12)

in which E1,G13 and ν13 stand for Young’s modulus, shear modulus and Poisson’s ratio,
respectively. Note that we have for an isotropic beam

a11 = 1

E
, a13 = − ν

E
, a55 = 1

G
= 2(1 + ν)

E
. (13)

The next step in deriving the governing equations consists of substituting (3), (4), (7),
(10) and (11) in the variational formula (5). The extremum conditions give the following
equilibrium equations:

d2M

dx2
= −q,

dM

dx
− Q = 0. (14)

The mixed variational formula (5) gives also the natural boundary conditions for this problem.
They are given after restating all of them in terms of force and moment as follows (at x =
∓L/2):

1. Either ψ is specified or M = 0,

2. Either w is specified or Q = 0.
(15)

Now, assuming that the beam has variable thickness h in the x-direction, we can write

h = h0[1 + λfn(x)], (16)

where h0 is the constant reference thickness value located as shown in Figure 1; fn(x) de-
scribes the thickness variation in which n is the degree of non-uniformity and λ is a small
parameter. The values of λ can be chosen so that the function fn(x) can be constrained to
have values satisfying

|fn(x)| ≤ 1. (17)

In addition to the equilibrium equations and boundary conditions, the mixed variational for-
mula gives also the stress resultants as follows:

M = −c11
[
1 + λfn(x)

]3
(

d2w

dx2
− dϕ

dx

)
, Q = c55

[
1 + λfn(x)

]
ϕ, (18)

where

c11 = bE1h
3
0

12
, c55 = 5

6
bh0G13. (19)



Elastic behaviour of an orthotropic beam with variable thickness 335

Figure 1. Variable thickness beam-one-dimensional plate: (a) uniform thickness beam subjected to uniformaly
distributed load, (b) linear thickness variation beam, (c) quadratic thickness variation beam, and (d) cubic thickness
variation beam.

For the elastic case it can be proved that a variable-thickness beam represented by (14)
may be replaced by a set of beams of uniform thickness h0. Substitution of (18) in (14) results
in the following linear differential equations for w(x) and ϕ(x),

d4w

dx4
− d3ϕ

dx3
= q

c11

[
1 + λfn(x)

]−3 − 6λ
[
1 + λfn(x)

]−1 dfn

dx

(
d3w

dx3
− d2ϕ

dx2

)

−3λ
[
1 + λfn(x)

]−1 d2fn

dx2

(
d2w

dx2
− dϕ

dx

)
− 6λ2 [

1 + λfn(x)
]−2

(
dfn

dx

)2 (
d2w

dx2
− dϕ

dx

)
,

(20)

d3w

dx3
− d2ϕ

dx2
= −c55

c11

[
1 + λfn(x)

]−2
ϕ − 3λ

[
1 + λfn(x)

]−1 dfn

dx

(
d2w

dx2
− dϕ

dx

)
. (21)

The appropriate solution to the linear differential equations (20) and (21) can be written with
the help of the small-parameters method as

w(x) = L

∞∑
s=0

λsws(x), ϕ(x) =
∞∑
s=0

λsϕs(x), (22)
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where the parameter λ is considered to be smaller than or equal to 0·5.
Note that ws and ϕs represent series of solutions corresponding to the series λs appear-

ing on the right side of the equations. Equating the coefficients of λs(s = 0, 1, 2, . . . ) for
both sides of (20) and (21), we can easily get two sets of differential equations representing
equivalent flat beams of uniform thickness h0. The solution of each differential equation may
be carried out by using suitable known methods of analysis for flat beams. Rigorous as well
as numerical methods of analysis may be used for this purpose. The solution applies to all
boundary conditions and all continuous thickness variations with continuous first and second
derivatives.

Introducing the dimensionless variable ξ(= x/L) and its differential operator D(= d/dξ),
then substituting (22) in (20) and (21), we can write

D4wm − D3ϕm = gm(ξ), m = 0, 1, 2, . . . (23)

D3wm − D2ϕm + cϕm = pm(ξ), m = 0, 1, 2, . . . (24)

where c = c55L
2/c11. The functions gm(ξ) and pm(ξ) for m = 0, 1, 2, . . . are given by:

g0 = qL3

c11
,

g1 = −3fng0 − 6DfnD2 (Dw0 − ϕ0) − 3D2fnD (Dw0 − ϕ0) ,

g2 = 6f 2
n g0 − 6Dfn

[
D2 (Dw1 − ϕ1) − fnD2 (Dw0 − ϕ0)

]
−3D2fn

[
D (Dw1 − ϕ1) − fnD (Dw0 − ϕ0)

] − 6 (Dfn)
2 d (Dw0 − ϕ0) ,

g3 = −10f 3
n g0 − 6Dfn

[
D2 (Dw2 − ϕ2) − fnD2 (Dw1 − ϕ1) + f 2

n D2 (Dw0 − ϕ0)
]

−3D2fn

[
D (Dw2 − ϕ2) − fnD (Dw1 − ϕ1) + f 2

n D (Dw0 − ϕ0)
]

−6 (Dfn)
2
[
D (Dw1 − ϕ1) − 2fnD (Dw0 − ϕ0)

]
,

...

p0 = 0,

p1 = 2cfnϕ0 − 3DfnD (Dw0 − ϕ0) ,

p2 = cfn (2ϕ1 − 3fnϕ0) − 3Dfn

[
D (Dw1 − ϕ1) − fnD (Dw0 − ϕ0)

]
,

p3 = cfn

(
2ϕn − 3fnϕ1 + 4f 2

n ϕ0
) − 3Dfn

[
D (Dw2 − ϕ2) − fnD (Dw1 − ϕ1)

+f 2
n D (Dw0 − ϕ0)

]
,

...

For practical applications, we may obtain an accurate solution by using only the first two or
three equations form the above sets of equations.
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3. Exact solution for bending

The first of the preceding sets of Equations (23) and (24), namely for m = 0, represent a flat
beam with constant loading g0 that is identical to the load applied on the original variable
thickness beam. The remaining equations in these sets represent flat beams with different
loads g1, g2, g3, . . . and so on. These loads can be determined once the displacements from
the preceding equations have been determined. Thus, Equations (23) and (24) are sets of
equations describing an equivalent system of flat beams that replace the original variable-
thickness beam.

Now, differentiating (24) with respect to ξ and using (23) in the resulting equation, we get:

cDϕm = Dpm(ξ) − gm(ξ), m = 0, 1, 2, . . . (25)

The general solution of the above differential equation is written as

ϕm = (C0)m + 1

c
pm(ξ) − 1

c
D−1[gm(ξ)], m = 0, 1, 2, . . . (26)

Using the above relation in (24), we then get, on rearranging terms, the desired equation for
the deflection w:

D3wm = −c (C0)m + 1

c
D2pm(ξ) − 1

c
Dgm(ξ) + D−1[gm(ξ)], m = 0, 1, 2, . . . (27)

The general solution to the above differential equation may be given as follows:

wm = (C1)m + (C2)m ξ + (C3)m ξ 2 + km(ξ), m = 0, 1, 2, . . . (28)

where km(ξ) is the particular solution of (27),

km(ξ) = −c

6
(C0)m ξ 3 + 1

c
D−1[pm(ξ)] − 1

c
D−2[gm(ξ)] + D−4[gm(ξ)]. (29)

Note that, in the above Equations (26), (27) and (29), the integral operator D−p is used,

D−p[ ] = ∫
. . .

∫ [ ]dξ . . . dξ. (30)
p times

The boundary conditions for hinged (H), clamped (C), and free (F ) at the edges x =
∓L/2 (or ξ = ∓1/2) will be written as:

H : w = M = 0,

C : w = ψ = 0,

F : M = Q : 0.

(31)

By following the present theory of beams, the bending moment M and the shear force
Q may be expressed in terms of the displacements w and ϕ in the z-direction of the beam
by substituting (22) in (18). Also, the normal stress σ1 through the thickness of the beam
(η = z/h) may be expressed in terms of w and ϕ as follows:

σ1 = −12q

b

(
L

h0

)2 (
η − 1

2

) [
1 + λfn(x)

] ∞∑
s=0

λsDψs. (32)
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Figure 2. Dimensionless deflection (w) vs. L/h0 ra-
tio at the center of a hinged-hinged isotropic beam
with linear thickness variation (n = 1).

Figure 3. Dimensionless deflection (w) vs. L/h0 ra-
tio at the center of a hinged-hinged isotropic beam
with quadratic thickness variation (n = 2).

For the sake of comparison the counterparts of (23) and (24), derived as per CBT is also

D4wm = gm(ξ), m = 0, 1, 2, . . . (33)

In this case, the functions gm(ξ) for m = 0, 1, 2, . . . follow directly from the corresponding
functions gm(ξ) by setting ϕm = 0. The general solution of (33) is given as follows:

wm = (
C0

)
m

+ (
C1

)
m
ξ + (

C2
)
m
ξ 2 + (

C3
)
m
ξ 3 + km(ξ), m = 0, 1, 2, . . . (34)

where km(ξ) is the particular solution of (33) which is given by

km(ξ) = D−4[gm(ξ)]. (35)

As concerns the boundary conditions at x = ∓L/2 associated with the CBT (ψ =
−dw/dx), these are similar to those given by (31) for FBT with the single exception of
free-edge conditions, where (31)3 is to be replaced by:

F : M = dM

dx
= 0. (36)

The coefficients (Ci)m and
(
Ci

)
m

result from applying the boundary conditions (31) and (36)
for FBT and CBT, respectively.

As a special case, the solution to the present thick-beam problem is given in the literature
by superposing the solution for a hinged-hinged isotropic flat beam under a uniform load of
intensity q0. For the sake of completeness, this solution of Timoshenko beam theory, given in
[11, pp. 197–204], is mentioned here:

w0 = q0L
4

24EI

{[( x

L

)4 − 3

2

( x

L

)2 + 5

16

]
− 2(1 + ν)

k

(
h0

L

)2 [( x

L

)2 − 1

4

]}
, (37)

where I = bh3
0/12 and k is the shear-correction factor [1].

4. Numerical examples

To demonstrate the procedure followed in the present study, we present some numerical results
for beams with uniform, linear, quadratic, and cubic thickness variations. In addition to the



Elastic behaviour of an orthotropic beam with variable thickness 339

Figure 4. Distribution of the dimensionless deflec-
tion (w) through the length of a hinged-hinged
orthotropic beam for different thickness variations
(λ = 0·3, L/h0 = 10).

Figure 5. Distribution of the dimensionless bending
stress (σ 1) through the length of a hinged-hinged
orthotropic beam for different thickness variations
(λ = 0·3).

Figure 6. Distribution of the dimensionless deflec-
tion (w) through the length of a clamped-hinged
orthotropic beam for different thickness variations
(λ = 0·3, L/h0 = 10).

Figure 7. Distribution of the dimensionless bending
stress (σ1) through the length of a clamped-hinged
orthotropic beam for different thickness variations
(λ = 0·3).

isotropic material (ν = 0·3), the numerical calculations are carried out for an orthotropic
material with the following dimensionless properties:

E1 = 20·83 Msi, G13 = 3·71 Msi, ν13 = 0·44. (38)

For the nonlinear thickness variation h the function fn(x) may be expressed as follows:

fn(x) =
(

x

L/2

)n

, n = 1, 2, 3, . . . (39)

Equations (26) and (28) are solved separately and their contributions ϕm and
wm(m = 0, 1, 2, . . . ) and the corresponding contributions w0, w1, w2, and so on, to the total
deflection w = L(w0 + λw1 + λ2w2 + λ3w3 + . . . ) of the beam are compared. The mid-
span point (x = 0) and the different values of the thickness parameter λ are used for this
purpose. Results are also obtained for combinations of the aspect ratio L/h0 and the parame-
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Figure 8. Distribution of the dimensionless deflec-
tion (w) through the length of a clamped-clamped
orthotropic beam for different thickness variations
(λ = 0·3, L/h0 = 10).

Figure 9. Distribution of the dimensionless bending
stress (σ1) through the length of a clamped-clamped
orthotropic beam for different thickness variations
(λ = 0·3).

Figure 10. Distribution of the dimensionless de-
flection (w) through the length of a clamped-free
orthotropic beam for different thickness variations
(λ = 0·3, L/h0 = 10).

Figure 11. Distribution of the dimensionless nor-
mal stress (σ1) through the length of a clamped-free
orthotropic beam for different thickness variations
(λ = 0·3).

ter ξ(≡ x/L). The deflections and normal stress being reported herein are of the following
dimensionless forms:

w0 = 102c11

q0L3
w0, w1 = 103c11

q0L3
λw1, w2 = 104c11

q0L3
λ2w2,

w3 = 105c11

q0L
3
λ3w3, w = 102c11w

q0L
4

, σ 1 = − b

q0

(
h0

L

)2

σ1(x, y, η).

The results of the present investigations are listed in Table 1 and Figures 2–15. Uniform
distribution of loading in the spatial domain, q(x) = q0, is used, where the domain of the
beam is −L/2 ≤ x ≤ L/2. Note that the dimensionless stress σ 1 is given in terms of the
ratio L/h0. Thus, the original bending stress σ1[≡ − (σ 1q0/b) (L/h0)

2] is proportional to
(L/h0)

2.
The results are summarized in Table 1 for the center deflections of an isotropic beam with

various thickness variations. The contributions w0, w1, w2, and w3 to the total deflection w of
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Figure 12. Dimensionless deflection (w) vs. the
thickness parameter (λ) of hinged-hinged or-
thotropic beam with linear, quadratic and cubit
thickness variations (ξ = 0, L/h0 = 10).

Figure 13. Dimensionless deflection (w) vs. the
thickness parameter (λ) of clamped-hinged or-
thotropic beam with linear, quadratic and cubit
thickness variations (ξ = 0, L/h0 = 10).

Figure 14. Dimensionless deflection (w) vs. the
thickness parameter (λ) of clamped-clamped or-
thotropic beam with linear, quadratic and cubit
thickness variations (ξ = 0, L/h0 = 10).

Figure 15. Dimensionless deflection (w) vs. the
thickness parameter (λ) of clamped-free orthotropic
beam with linear, quadratic and cubit thickness vari-
ations (ξ = 0, L/h0 = 10).

the beam for different values of the thickness parameter λ are compared in Table 1. Figures 2
and 3 display the variation of the dimensionless mid-span deflection w vs. the beam aspect
ratio (≡ L/h0) for a hinged-hinged isotropic beam with linear (n = 1) and quadratic (n = 2)
thickness variations, respectively. The results obtained within the present FBT are compared
with their classical counterparts in Table 1 and Figures 2 and 3. Figures 4 and 5 display the
variation of w and normal stress σ 1 at the upper surface of the beam (η = 0) through the
length of the hinged-hinged orthotropic beam with various thickness variations. Similar results
for clamped-hinged, clamped-clamped, and clamped-free beams are given in Figures 6–11.
Finally, the effect of the thickness parameter λ on the dimensionless mid-span deflection of
beams with linear, quadratic, and cubic thickness variations subjected to various boundary
conditions is shown in Figures 12–15. Note that the uniform beam deflections are, of course,
given in these figures for λ = 0.
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5. Discussion

Examination of the results displayed in Table 1 and Figures 2 and 3, reveal that the deflections
of a uniform beam w0 compare very well with those obtained using the exact solution given
in the literature with any appropriate value of the shear-correction factor k. In fact, the present
uniform-beam deflections are identical to those obtained using the exact solution given in (37)
for the shear-correction factor k = 5/6. It is clear that the total deflections predicted by the
FBT are higher than those of the CBT. This is due to the fact that the CBT represents beam
behaviour as relatively more stiff. Increasing the values of the thickness parameter λ will lead
to an increase of the total deflections for beams with linear and cubic thickness variations,
while it will lead to a decrease of the total deflections for beams with quadratic thickness
variation. Table 1 and Figures 2, 3 and 12–15 are very revealing in this respect.

Figure 4 reveals that the variation of w is very sensitive to variations of the parameter
ξ(≡ x/L) of a hinged-hinged beam, irrespective of the considered thickness variations. In
this sense, the linear thickness variation shows the highest sensitivity in the context of the
considered thickness variations. Figure 5 reveals also the sensitivity of σ 1 through-the-length
of a hinged-hinged beam.

Concerning the influence played by the boundary conditions on the analyzed response
characteristics, Figures 6–11 emphasize their great influence on the analyzed response char-
acteristics.

6. Conclusions

The present FBT is a fairly simple theory that includes a shear-deformation contribution
with what appears to be reasonably good accuracy. So, we may now be able to determine
the normal stress σ1 and the deflection curve w(x) for short, as well as long beams. We
have presented in this study only selected examples that illustrate the essential features of
the present formulation. Exact solutions have been developed for orthotropic beams with
various thickness variations, subjected to uniformly distributed loads. The effects of shear
deformation, the thickness parameter λ, the aspect ratio L/h0, the parameter ξ(≡ x/L), the
thickness variation, and the boundary conditions on the deflection and normal stress have been
investigated.

One of the goals of this paper has been to develop a simple theory for the bending of
orthotropic beams, allowing one to incorporate the transverse-shear effect without using any
shear-correction factor. By satisfying the transverse shear-stress-free conditions on the lateral
surfaces of the beam, a pair of coupled equilibrium equations was obtained such that no
arbitrary shear-correction factor is required. It has been shown that the uncoupled equation
for the deflection is the same as the corresponding equation in Timoshenko’s beam theory,
provided that for Timoshenko’s equation the shear-correction factor is taken as 5/6.

Another goal has been the use, in this context, of a powerful technique based on the small-
parameter method allowing one to obtain exact solutions associated with the case of variable-
thickness orthotropic beams. Additional results concerning the bending response of thin and
thick plates with various thickness variations will be reported in future publications.
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